EX-01

retour

Développer et réduire chacune des expressions suivantes : \[ A(x) = x - 4(3x - 2). \] Corrigé

\[\begin{aligned} A(x)&= x - 4(3x - 2)&\\ &= x - 4\cdot 3x - 4 \cdot (-2)&\\ &= x - 12x + 8&\\ &= -11x + 8.& \end{aligned}\]
\[ B(x) = (x-2)(x-3). \] Corrigé
\[\begin{aligned} B(x)&=(x-2)(x-3)&\\ &= x \cdot x + x \cdot (-3) - 2\cdot x - 2 \cdot (-3)&\\ &=x^2 -3x -2x + 6&\\ &= x^2 - 5x + 6.& \end{aligned}\]
\[ C(x)=6 - 3(2x - 1). \] Corrigé
\[\begin{aligned} C(x) &= 6 - 3(2x - 1)&\\ &=6 - 3\cdot (2x) - 3 \cdot (-1)&\\ &=6 - 6x + 3&\\ &=9 - 6x.& \end{aligned}\]
\[ D(x)=(5x-4)(3x + 2). \] Corrigé
\[\begin{aligned} D(x) &=(5x-4)(3x +2)&\\ &= 5x\cdot 3x + 5x\cdot 2 - 4\cdot 3x - 4\cdot 2&\\ &=15x^2 + 10x - 12x - 8&\\ &= 15x^2 - 2x - 8.& \end{aligned}\]
\[ E(x)=3\left(x - \frac 1 3\right). \] Corrigé
\[\begin{aligned} E(x) &=3\left(x - \frac 1 3\right)&\\ &= 3\cdot x + 3\cdot\left(-\frac 1 3\right)&\\ &=3x - 1.& \end{aligned}\]
\[ F(x)=2x\left(\frac 1 2 x + 1\right). \] Corrigé
\[\begin{aligned} F(x) &=2x\left(\frac 1 2 x + 1\right)&\\ &=2x\cdot\frac 1 2x + 2x \cdot 1&\\ &=x^2 + 2x.& \end{aligned}\]

retour

code : 226